智 育 广 角

函数思想在解不等式中的应用

文/惠州市惠阳中山中学 叶昌

对于解不等式讨论最多的是求 最值问题、含参数不等式恒成立等 问题,实际上求解含参数不等式里 包括不少的求最值问题,有不少的 数学教学工作者结合实例总结 为对于含参数和 不等式恒成立,确定参数取值范围 的这一类问题.这类问题涉及的知识面较广,综合性较强,同时数学 语言比较抽象,利用等价转化、函数思想的数学思想方法,把所求问 题转化为函数问题,再运用函数的 性质求解,既能解决问题又能减少 运算量.

因而,求含参数不等式的恒成 立问题时,常根据不等式的结构特 征,恰当地构造函数,等价转化为 一次函数问题、二次函数问题、求 函数的最值问题.

一、利用一次函数性质解不等 式

对于一些不等式,我们可以通过变形将其转化为一次函数,然后再运用一次函数的性质求解. 一次函数 $f(x)=kx+b(k\neq0)$ 的性质f(x)>0在 [a,b] 上恒成立 $\Leftrightarrow f(a)>0$ f(b)>0.

例: 对一切 $p \in [-2,2]$,不等式 $\log_2^2 x + p \log_2 x + 1 > 2 \log_2 x + p$ 恒成立,求实数x的取值范围.

分析:若直接解关于x的不等式,再利用 $p \in [-2,2]$ 或x的取值范围,显然相当复杂.但仔细观察后,发现通过恒等变后,再利用一次函数性质,问题将得解.

解: 令 $f(p) = (\log_2 x - 1) p + (\log_2 x - 1)^2$,由题意知 f(p) > 0,在 $p \in [-2,2]$ 上恒成立,则有 $[f(-2) = -2(\log_2 x - 1) + (\log_2 x - 1)^2 > 0,$ $f(2) = 2(\log_2 x - 1) + (\log_2 x - 1)^2 > 0,$ $\Rightarrow \log_2 x > 3$ 或 $\log_2 x < -1$, $\Rightarrow x > 8$ 或 $0 < x < \frac{1}{2}$,所以,x 的取值范围为

(0, 1/₂) ∪ (8,+∞) . 木 斯 交 易 因 田 维:

本题容易因思维定势常把原不等式视为关于 $\log_2 x$ 的二次不等式,用分类讨论解答,过程相当繁杂.如果能注意观察 $\log_2 x$ 与 p 的关系,结合常量与变量的转化思想,把 p 变为主元, $\log_2 x$ 变为参数,则原不等式问题,通过函数思想,构造函数 f(p),把问题转化为常规问题,简单易解.

二、利用二次函数性质解不等式

例: 已知不等式 (*m*²+4*m*-5)*x*² -4(*m*+1)*x*+3>0 对一切实数恒成立,

求实数m的取值范围.

分析:以上不等式恒成立,首 先考虑利用不等式恒为正的充要条件,并对二次项系数分类讨论.

解: (1) 当 $m^2+4m-5=0$ 时, 解得 m=1 或 m=-5. 显然, m=1 时, 符合条件; m=-5 不符合条件.

(2) 当 $m^2+4m-5≠0$ 时,由 二次函数对一切实数恒为正数的充 要条件,得

 $m^2+4m-5>0$,

 $\Delta = 16(m-1)^2 - 12(m^2 + 4m - 5) < 0$, 解得 1 < m < 19, 所以, 实数 m 的取值范围为 [1,19).

在本题中往往会忽略二次系数 为零的情况,直接当作一元二次不 等式来求解,从而导致失解、漏解 的情况出现,应引起重视.

三、利用函数最值解不等式

通过变形将其转化为求函数最值问题,我们常用的策略和方法有:分离参数法、变更主元法、分类讨论法、二次函数法、数形结合法、函数的单调性法等.

例:若对于 $x \in [2,2]$, $mx^2-mx-6+m<0$ 恒成立,求实数 m 的取值范围.

解析: 若 $f(x)=mx^2-mx-6+m<0$,即 $m(x^2-x+1)<6$ 在 $x \in [2,2]$ 时恒成立. 又 $x \in [2,2]$ 时, $x^2-x+1 \in [\frac{3}{4},7]$,即 $x^2-x+1>0$,所以原不等式等价于 $m<\frac{6}{x^2-x+1}$ 恒成立,即 $m<(\frac{6}{x^2-x+1})_{min}$.又 $\frac{6}{7} \le \frac{6}{x^2-x+1} \le 8$,所以 $(\frac{6}{x^2-x+1})_{min}$ 一 $=\frac{6}{7}$,所以 $m<\frac{6}{7}$.所以 m 的取值范围为 $(-\infty,\frac{6}{7})$.

在含参数的不等式恒成立的问题中,若能将所求参数与自变量分离出来,则可以借助于求函数的最值,解出参数的范围.

责任编辑 罗 峰